Human face recognition methods based on principle component analysis (PCA), wavelet and support vector machine (SVM) : a comparative study
نویسندگان
چکیده
منابع مشابه
Wavelet Support Vector Machine for Face Recognition
In this paper a tool system with wavelet support vector machine (WSVM) under dimension reduction for face recognition is proposed. Eigenfaces and fisherfaces are the major methods used to reduce the dimension of face images in the proposed face recognition tool system. At the same time, noise interference image cases, namely Gaussian noise, with no ears and no eyes are also considered in this p...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملOptimized Method for Real-Time Face Recognition System Based on PCA and Multiclass Support Vector Machine
Automatic face recognition system is one of the core technologies in computer vision, machine learning, and biometrics. The present study presents a novel and improved way for face recognition. In the suggested approach, first, the place of face is extracted from the original image and then is sent to feature extraction stage, which is based on Principal Component Analysis (PCA) technique. In t...
متن کاملFace Recognition Technique Using PCA, Wavelet and SVM
Biometric-based technologies include the identification based on physiological characteristics such as face, fingerprints, hand geometry, hand veins, palm, iris, retina, ear, voice and behavioral traits such as gait, signature and keystroke dynamics [1]. These biometric technologies require some voluntary action by the user. However, face recognition can be done passively without any explicit a...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indonesian Journal of Electrical Engineering and Computer Science
سال: 2020
ISSN: 2502-4760,2502-4752
DOI: 10.11591/ijeecs.v20.i2.pp991-999